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Abstract
Composting is a sustainable waste management technique that transforms organic matter into a valuable, soil 
amendment through processes such as thermophilic decomposition. However, thermophilic composting leads to a loss 
of important nutrients such as nitrogen by up to 50% in some cases. This is due to low-quality feedstock and loss of labile 
nutrients caused by high pile temperatures in the early phase of the process. Ultimately, the low quality of compost can 
potentially reduce soil fertility and crop productivity. We sought to enhance compost quality by biochar addition during 
heaping and supplemental Tithonia diversifolia application during post-thermophilic stages. We did a field setup of four 
composting treatments; Conventional practice; (Cattle manure + dry maize stalks + Lantana camara); L, Biochar compost 
(Cattle manure + dry maize stalks + Lantana camara + Biochar); B, Biochar compost + Tithonia diversifolia; post-thermophilic 
phase Tithonia diversifolia supplementation to L (LT) and B (BT). Sampling for physicochemical parameters analysis was 
done every 21 days over 84 days on each heap. We used assorted functions in the R statistical package (version 4.3.1) 
to plot the principal component analysis, correlation matrix, and analysis of variance among compost treatments. Total 
nitrogen exhibited significant positive correlations with all other variables. We also observed significantly higher nutrient 
levels in biochar-based composts than those without biochar amendment. Supplemental addition of Tithonia diversifolia 
in the post-thermophilic stage significantly increased nitrogen levels (1.59% in BT and 1.32% in LT compared to 1.34% 
and 1.24% in B and L, respectively). However, this addition led to a rise in pile temperature, prolonging the composting 
duration. We observed the highest nitrogen and organic carbon levels in BT (1.59% and 24.9%, respectively) at the end 
of the composting process. Our study recommends applying nutrient-boosting materials such as Tithonia diversifolia, in 
the post-thermophilic stage to minimize nutrient losses during composting.

Keywords  Organic amendment · Humus · Nutrient loss · Decomposition · Cattle manure · Co-composting

1  Introduction

The incorporation of compost into soils improves fertility through build-up of organic matter and nutrients while supporting 
the development of a robust soil microbial community [1, 2]. However, previous studies have shown that compost 
is sometimes deficient in soil nutrients, crucial for plant growth [3–5]. For example, nitrogen loss has been reported in 
kitchen waste (8.87–39.37%) [6, 7], poultry manure (16–76%) [8, 9] and cattle manure (13.13–50%) [10, 11] composts. These 
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deficiencies are often attributed to the imbalanced nutrient composition of feedstock materials and losses during composting. 
The losses are also attributed to compost management practices [3, 4, 12]. The main routes of losses for phosphorus and 
potassium are through leaching. On the other hand, carbon is volatilized as carbon dioxide and methane, while nitrogen is 
mainly lost as ammonia and nitrous oxide [13–16]. Pile conditions such as temperature, moisture, and aeration substantially 
influence compost quality, with temperature management being the main non-feedstock influencer of nutrient dynamics 
[17–19]. This positions the temperature-dependent phases of composting as critical pointers to nutrient dynamics. The losses 
of nutrients, such as nitrogen and carbon are particularly attributable to the thermophilic phase of composting, characterized 
by high temperatures [18].

The phytochemical composition of feedstock substantially influences compost succession and ultimately compost quality. 
For example, simple sugars encourage faster microbial decomposition rates compared to the more recalcitrant materials like 
cellulose and lignin [20–23]. The complex materials also extend the thermophilic phase and immobilization of nutrients in the 
ecosystem. Breaking the immobilization barrier of this complex matter in the ecosystems necessitates thermal pretreatments 
such as biochar addition which have a phytochemical configuration allowing mobilization of nutrients and trapping. This 
therefore contributes to the reduction of nutrient losses [24–26].

Biochar is an inert carbon-rich organic material produced through the pyrolysis of dry matter under oxygen-limited 
conditions [27–29]. The biochar matrix stabilizes soil nutrients by trapping volatile nutrient forms such as ammonia and 
carbon dioxide by providing an aromatic carbon framework that supports the formation of functional groups [30–33]. These 
functional groups include carboxyl, phenolic, and amino moieties that facilitate nutrient retention in the ecosystems [32]. 
The positive effect of this medium on compost nutrient retention has not been exhaustively studied; for example, the impact 
of biochar during cattle manure and Tithonia diversifolia co-composting. Existing studies on cattle manure co-compositing 
with biochar have been done on pilot set-ups e.g. rotary tanks [34, 35] with scanty information on full-scale field experiments. 
Despite their capacity to refine methodologies, laboratory-scale pilot studies have limitations in their viability for practical 
composting solutions.

Nitrogen, phosphorus, and potassium are among the important nutrients fortified by adding green matter during cattle 
manure composting. Conventionally, these materials are co-composted with cattle manure and dry matter [11, 36]. However, 
these green materials decompose faster with Tithonia diversifolia being fully broken down in ten to thirty days compared to 
the more recalcitrant carbon-rich dry matter [37, 38]. This implies that Tithonia diversifolia is fast in nutrient release in forms 
that plants can take up before the compost reaches full maturity. Conversely, dry matter such as maize stalks, bean biomass, 
and sawdust fully decomposes only after three months. Consequently, yielded nutrients such as nitrogen are possibly lost due 
to their ready availability, while the composting period persists. The loss is further compounded by the volatility of nutrients 
during the early thermophilic phase of composting, where elements like nitrogen are lost in labile forms such as nitrous oxide 
and ammonia. Tithonia diversifolia by itself is also capable of elevating pile temperature but the peak temperatures are less 
prolonged [38]. On the other hand, organic carbon is mainly lost in gaseous form as methane and carbon dioxide [13, 39, 40].

Nutrient losses during composting potentially affect compost quality. While conventional composting methods often lead 
to substantial losses of crucial soil nutrients, strategies to minimize these losses are needed. Therefore, we investigated the 
effect of rice husk biochar addition at heaping and post-thermophilic stage Tithonia diversifolia application on the succession 
of compost physicochemical elements, nutrient losses, and product quality. We hypothesized that adding rice husk biochar 
during heaping and Tithonia diversifolia during the post-thermophilic stages would minimize losses and maintain the 
compost quality.

2 � Materials and methods

2.1 � Site description and feedstock sourcing

We set up the field study at the Farming Systems Comparison in the Tropics (SysCom) project trial site at Kandara, Kenya 
(01° 0.231′ S 37° 04.747′ E) [36] between March and June 2022. The site lies at 1518 m a.s.l, in the upper midland 3 (UM3) 
agro-ecological zone. Moreover, Lantana camara and Tithonia diversifolia thrive on furrow land and hedges in the area, 
offering viable soil fertility options for uptake by farmers in the region.

The feedstock materials included rice husk biochar and fresh cattle manure from a zero-grazing dairy unit close to 
the site. Dry maize stalks were sourced from the project trial plots, while green materials (Lantana camara and Tithonia 
diversifolia twigs) were harvested from hedges- and furrow land around the trial site. On the other hand, rice husk 
biochar was sourced from commercial fields, in Mwea, Kirinyaga County in Kenya, (50 Kilometers from the project site). 
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Preparation of rice-husk biochar was done by pyrolyzing dry rice husks in a kiln under limited oxygen conditions at 
temperatures ranging from 300 to 600 °C; for 5 h. This was followed by cooling in open fields, before transportation to 
the composting site.

2.2 � Treatment selection and pile layering

We rationalized treatments (Table 1) based on common farm-yard composting practices in the tropics [11]. Cattle manure 
is co-composted with dry maize stalks and green matter (Lantana camara) with all materials being heaped at day zero 
(0). The sources of variation were the addition of biochar during heaping and supplemental green matter (Tithonia 
diversifolia) during the cooling phase (at day 63 of composting).

Maize stalks and Lantana camara twigs were individually cut into small pieces (3–5 cm long) using machetes for 
uniformity and enhanced breakdown. Each compost treatment was replicated thrice and set under a composting shade. 
Heaping was done by layering the materials as per the common practice of farm-yard composting in sub-Saharan 
Africa [36]. Heaping individual compost piles began by spreading small dry twigs on a flat surface and sprinkling them 
with water. This was followed by a layer of chopped dry maize stalks and moisture adjustment to about 60%, then, a 
layer of cow dung manure followed. Finally, we added a layer of Lantana camara. Layering was repeated five times for 
each pile as described above and a thermostick was inserted diagonally for moisture and complementary temperature 
monitoring. Compost pile aeration was done by turning it every 4 days during the first 20 days; then weekly until 84 days 
of composting and moisture levels maintained at about 40%. Fresh chopped Tithonia diversifolia twigs were added on 
the 63rd day of composting for the LT and BT treatments. This was done by incorporating the chopped twigs into the 
heaps through turning.

2.3 � Sample collection for physicochemical analysis

Daily monitoring of temperature from each compost pile and ambient temperature was done using a compost 
thermometer (model: WIKA 110824862-EN 13190). We collected daily temperature data from three random points on 
each compost pile by inserting the thermometer halfway between the top and bottom of the pile to the maximum probe 
depth (45 cm) as described by Matheri et al. [11]. This followed a top-down approach at each sampling point, to ensure 
a representative sample was collected. The samples from the 3 points were then homogenized in a clean bucket before 
transportation to the laboratories for analysis. Compost samples for the analysis of other physicochemical parameters 
were collected every 21 days till the end of the 84-day composting period. Compost samples were collected at 21, 42, 
63, and 84 days of composting.

2.4 � Laboratory analysis of physicochemical parameters of compost

The pH of compost (1:10 w/v waste: water extract), moisture, mass loss, and microbial carbon dioxide respiration during 
sampling days (mg CO2 g-1d-1) were determined as described by Adamtey [41]. Total Kjeldahl Nitrogen (TKN), the total 
organic carbon, and Olsen phosphorus were analyzed from shade-dried samples using the standard methods described 
by Okalebo et al. [42]. TKN was quantified through acid digestion, distillation, and titration. On the other hand, Olsen 
phosphorous was extracted using sodium bicarbonate and quantified colorimetrically. Dichromate oxidation and titration 
based on the Walkley–Black method were the protocols used for organic carbon quantification. Mineral nitrogen was 
extracted from fresh compost samples using the KCL method and analyzed spectrophotometrically.

2.5 � Statistical data management

We conducted statistical data analysis using R software, v 4.3.1 [43]. We log standardized data with the decostand function 
in the vegan package [44] to calculate the distributions of physicochemical parameters. This was followed by plotting 
a distance matrix and visualization in a PCA plot, representing each variable’s direction and contribution to the overall 
variations of the treatments. We also computed a Pearson correlation matrix using the corrplot function in the corrplot 
package [45]. The resulting measurements of all the physicochemical parameters were also individually subjected to a 
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normality test using the Shapiro test and homoscedacity using the (leveneTest()) function in the car package. Data that 
were not normally distributed were log transformed using log() function. This was the followed by analysis of variance 
(ANOVA) under the agricolae package [46]. A post hoc comparison of the compost treatment means was made per 
composting day for each physicochemical variable, using Tukey’s Honestly Significant Difference (HSD). The analysis 
of the overall significance of treatment and composting duration effects was also tested. Plotting of daily temperature 
from all the compost treatments over the composting period was done using ggplot2 (version 3.5.0) and ggpubr (version 
0.6.0) packages [47].

3 � Results

3.1 � Succession of pile temperatures in different compost treatments

All compost treatments achieved a temperature peak above 55 °C by the 4th day of composting till the 8th day (Fig. 1). 
Biochar-based composts (B and BT) consistently recorded higher pile temperatures than L and LT, respectively. There 
was also a notable spike in pile temperatures in LT and BT treatments at 63rd day of composting (Fig. 1). This is after 
the post-thermophilic application of Tithonia diversifolia to both treatments. We observed notable unique temperature 
peaks in B and BT, with these treatments recording higher overall pile temperatures than the other treatments. Overall 
plateauing of pile temperatures of B and L treatments began after 63 days of composting while LT and BT treatments 
pile temperatures surged. This indicates that the two latter treatments had prolonged maturation periods, due to the 
supplemental Tithonia diversifolia addition (Fig. 1).

3.2 � Contribution of physicochemical parameters to differences in composts

Principal Component 1 (PC1) and Principal Component 2 (PC2) showed 64.4% and 16.1% of the total variance, 
respectively (Fig. 2). Parameters such as pH, organic carbon, carbon to nitrogen ratio (C: N), and moisture content 
showed strong positive associations with PC1.

3.3 � Compost physicochemical parameters and impact on compost quality and maturity

Most physicochemical parameters were positively correlated with each other (Fig. 3). We found out that total 
nitrogen exhibited significant positive correlations with all other measured variables. Conversely, Nitrate nitrogen 

Fig. 1   Temperature plot of changes in B and L composts (A); BT and LT composts (B)
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was negatively correlated with all the physicochemical parameters in compost. Notably, total phosphorous was only 
correlated to organic carbon and ammonium nitrogen.

3.4 � Influence of supplemental Tithonia diversifolia and biochar on compost physicochemical parameters

The piles pH was similar among all treatments from the beginning of the composting period until the 84th day of 
composting when the pH of BT and LT treatments had significantly higher pH than other treatments (Table 2). The 
addition of Tithonia diversifolia notably brought about a significant increase in CO2 evolution in compost. This is 
associated with the rise in temperature in the respective compost piles. Overall, Biochar-based composts recorded 
reduced CO2 emissions compared to composts without biochar addition.

4 � Discussion

The conventional way of compost preparation potentially leads to suboptimal nutrient levels in compost limiting its 
effectiveness as a soil amendment. The high temperature at the thermophilic phase often leads to significant nutrients 
losses, particularly nitrogen. These losses must be mitigated using practical approaches such as the application of biochar, 
which is a matrix known to reduce nutrient losses. Moreover, the addition of Tithonia diversifolia in post-thermophilic 
stages of composting has the potential to minimize nutrient losses. Tithonia diversifolia is a nutrient-dense supplemental 

Fig. 2   A biplot of Principal 
component analysis (PCA) 
of compost physicochemical 
parameters. The influence 
of each variable on sample 
distribution is represented by 
the arrows radiating from the 
center of the PCA plot

Fig. 3   A Pearson correlation 
bubble plot depicting 
correlation among analyzed 
physicochemical variables. 
Positive and negative 
correlations are displayed 
in blue and red shades, 
respectively. The size and 
intensity of matrix circles are 
proportional to the correlation 
coefficient
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material that easily mineralizes leading to losses especially due to high temperatures. Since the essence of thermophilic 
conditions is mainly to sterilize and humify manure and dry matter, it is therefore practically feasible to add Tithonia 
diversifolia during cooler phases.

4.1 � Influence of biochar and post‑thermophilic Tithonia diversifolia addition on compost temperature

The attainment of thermophilic conditions in all compost treatments positions all tested feedstocks as capable 
of pathogen and weed sanitization in cattle manure [48–50]. The thermophilic conditions also quicken nutrient 
mineralization, stabilization, and humification of organic matter [51–53]. The consistently higher pile temperatures in 
biochar-based composts (B and BT) than L and LT are attributable to the uncharred husks in the rice-husk biochar. 
Uncharred rice-husks are colonized by micro-organisms and broken down into simpler sugars accompanied by 
temperature increase [54, 55]. This potentially hinders the attribution of this observation solely to the biochar. The sudden 
rise in pile temperatures in LT and BT treatments at 63rd day was brought about by the post-thermophilic application of 
Tithonia diversifolia to both treatments. Among the constituent elements broken down by microbes in Tithonia diversifolia 
are carbon and nitrogen, which are in simpler forms compared to those in Lantana camara. We attribute the temperature 
increase to the carbon breakdown in the applied Tithonia diversifolia. This decomposition is mediated by decomposition 
communities in the compost ecosystem [56, 57]. The rapid decomposition of Tithonia diversifolia in nature is attributable 
to its low lignin content and favorable carbon-to-nitrogen (C:N) ratio, which accelerates microbial activity. This rapid 

Table 2   Evolution of compost 
physicochemical parameter, 
as influenced by various 
treatments

C is Organic carbon; Total N is total nitrogen, Nitrate_N is Nitrate nitrogen; Ammonium_N is Ammonium 
nitrogen. B is biochar-based compost, L is Lantana-based compost, BT is biochar-based compost with 
post-thermophilic tithonia addition, and LT is Lantana-based compost with post-thermophilic Tithonia 
diversifolia application

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05

Variable Composting 
duration

B BT L LT Significance

pH 21 8.7 8.7 8.7 8.7 Ns
42 8.57 8.57 8.54 8.54 Ns
63 8.60 8.60 8.59 8.59 Ns
84 8.2b 9.2a 8.2b 9.2a ***

C (%) 21 30.7a 30.7a 26.1b 26.1b ***
42 24.6a 24.6a 18.9b 18.9b ***
63 21.5a 21.5a 19.3b 19.3b ***
84 18.7bc 24.9a 17.7c 19.6b ***

Total N (%) 21 1.67a 1.69a 1.43b 1.47b ***
42 1.54a 1.54b 1.31b 1.31b **
63 1.42 1.41 1.38 1.39 Ns
84 1.34b 1.59a 1.24b 1.32b ***

Nitrate_N (ppm) 21 1.26a 1.26a 0.16b 0.16b ***
42 13b 13b 34.3a 34.3a ***
63 7.85b 7.85b 15.70a 15.70a ***
84 32.1b 3.2d 100a 18.8c ***

Ammonium_N (ppm) 21 84.0b 84.0b 109.1a 109.1a ***
42 47.2a 47.3a 39.1b 39.1b ***
63 44.8a 44.9a 41.5b 41.5b ***
84 11.7a 11.3a 5.8b 10.7a *

Total phosphorous (%) 84 0.61a 0.61a 0.41b 0.47b ***
CO2 respiration (%) 21 11.5 14.0 12.1 11.2 Ns

42 7.1 7.7 7.7 8.0 Ns
63 4.8b 5.8ab 6.2a 6.5a **
84 3.2b 8.7a 4.7b 10.4a **
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decomposition highlights the potential of Tithonia diversifolia as a valuable organic amendment for agricultural systems 
[58, 59].

4.2 � Impact of physicochemical parameters on compost quality

The strong positive associations of pH, organic carbon, and moisture content with PC1 indicates their importance in 
shaping treatment differences and thus provide a basis for their further exploration of compost quality. Carbon, the C: 
N ratio and moisture content are key drivers of soil health, impacting microbial activity, organic matter decomposition, 
and ultimately nutrient cycling. Higher carbon content enhances soil structure and water retention, while an optimal C: 
N ratio ensures efficient nutrient cycling. Moreover, moisture is essential for these processes, impacting soil fertility and 
crop productivity [60].

The significant positive correlations of total nitrogen with all other measured variables position nitrogen content as 
a central factor influencing the overall compost quality. Previous studies have reported that low nitrogen in compost 
limits microbial growth and slows down the decomposition rate [61, 62]. Moreover, the deficiency of nitrogen shifts the 
balance to a higher C: N ratio, essentially meaning more carbon is available in the ecosystem. This potentially leads to an 
increased thermophilic phase [61, 63]. Conversely, nitrate nitrogen was negatively correlated with all the physicochemical 
parameters in compost. Nitrate nitrogen has been reported to be negatively correlated with pH [64]. On the contrary, most 
studies on similar matrices such as soil, have reported a positive correlation between nitrate nitrogen and total nitrogen 
and pH [65–68]. The lack of a positive correlation of phosphorous with multiple variables implies that phosphorus content 
is relatively independent of the other measured parameters. Thus, indicating that factors influencing phosphorus levels 
in studied compost regimes might differ from those affecting nitrogen and other key variables.

Our findings highlight the multifaceted nature of compost quality assessment and the importance of considering 
multiple indicators to gain a comprehensive understanding of compost dynamics [69–71]. The application of organic 
materials such as biochar, compost, Lantana camara, and Tithonia diversifolia is critical in maintaining an optimal carbon-
to-nitrogen balance in soils. This balance is essential for enhancing overall nutrient availability, improving soil structure, 
and promoting sustainable crop growth [72–75].

4.3 � Influence of supplemental materials on compost quality

The addition of Tithonia diversifolia in the two compost treatments; LT and BT at 63rd day, led to the increase in pH. This 
can be explained by the potential increase in ammonia caused by the high temperatures recorded in these treatments. 
The addition of Tithonia diversifolia to similar matrices has been shown to contribute to a rise in pH [76, 77]. The increase 
in microbial CO2 respiration in BT and LT composts after the addition of Tithonia diversifolia is associated with the 
temperature in the respective compost piles. The temperature increase is occasioned by the breakdown of Tithonia 
diversifolia-borne carbon by microbes [11]. Tithonia diversifolia contains easily biodegradable carbohydrate polymers 
and secondary metabolites such as polyphenols whose breakdown by microbes prompts temperature surge [78–80]. 
Supplemental Tithonia diversifolia application increased the total nitrogen in the compost treatments compared to the 
ones without addition. The phytochemical composition of Tithonia diversifolia which includes nitrogen, phosphorus, 
and assorted secondary metabolites [80] directly influence the breakdown efficiency and compost quality. The reduced 
microbially respired CO2 in biochar-based compost until day-63 of composting can be explained by its relatively stable 
nature, slowing microbial breakdown of carbon in compost. Biochar has been reported by various studies as capable of 
reducing these emissions by trapping the gaseous emissions from the compost pile [81, 82].

Biochar improves soil nutrient retention by increasing the cation exchange capacity and surface area; thus, reducing 
nutrient losses [83–85]. The conformation of the biochar matrix also presents it as a sink with higher sequestration 
capacity, thus reducing losses of gaseous emissions such as CO2 [86–88]. Biochar from different feedstocks has also been 
reported as a sequestrant of heavy metals in soil, reducing copper and zinc by up to 14.6 mg kg−1 and 117.2 mg kg−1 
respectively [89]. This confirmed that the two factors are critical for nutrient status and ultimately compost quality. 
Other studies have also reported that the nature of feedstock and the duration of composting have a major influence 
on nutrient mineralization, losses, and stability [90–92].
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5 � Conclusion

The addition of biochar to compost led to lower microbial CO2 respiration at the end of composting, indicating more 
stabilized organic matter. Moreover, a combination of biochar and post-thermophilic phase supplementation of 
Tithonia diversifolia contributed to higher nitrogen and organic carbon levels compared to their separate application to 
compost. This highlights that the synergistic effect of biochar and Tithonia diversifolia enhances compost nutrient content 
compared to the sole addition of the feedstocks to the compost. The combined effect of these two amendments in soil 
balances the C: N ratio and may ensure the immediate and slow release of important nutrients such as nitrogen. This study 
has potential for replication with similar substrates but there are potential variations due to the phytochemical quality 
of feedstock. For example, biochar quality is dependent on the type of material pyrolyzed. Moreover, we appreciate 
the potential heterogeneity occasioned by the use of unsieved biochar (containing both charred and uncharred rice 
husks); which is the common composting practice in the area. We therefore recommend further experimentation on 
standardization of biochar to leverage common practice and practicability of the input to compost improvement with a 
view to standardize the feedstock and optimize compost quality. The post-thermophilic addition of Tithonia diversifolia 
could potentially have limited its integration with the compost matrix, reducing its effectiveness as an amendment. 
Therefore, we recommend further composting studies that explore optimizing composting efficiency and nutrient 
stabilization due to the extended composting periods required when Tithonia diversifolia is added at post-thermophilic 
stage.
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